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Using data from the Microarray Quality
Control (MAQC) project, we demonstrate
two data-analysis methods that shed light
on the normalization of gene expression
measurements and thereby on their
technical variation. One is an improved
method for normalization of multiple
assays with mRNA concentrations related
by a parametric model. The other is a
method for characterizing limitations on
the effectiveness of normalization in
reducing technical variation. We apply
our improved normalization to the four
project materials as part of testing the
linearity of the probe responses. We find
that the lack of linearity is statistically
significant but small enough that its
sources cannot be easily identified.
Applying our characterization method to

assays of the same material, we show that
there is a source of variation that cannot be
eliminated by normalization and therefore
must be dealt with by other means. Four
high-density, single probe, one-color
microarray platforms underlie our
demonstration.
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1. Introduction

Monitoring the expression of thousands of genes
simultaneously for the purpose of obtaining biological
insight requires an effective approach to the technical
variation. Particulars of technical variation are often
sought through an inter-laboratory study, of which the
Microarray Quality Control (MAQC) project is an
example. Using data from the MAQC project, we
demonstrate statistical modeling techniques that lead to
better understanding of the technical variation in gene
expression assays. These techniques have had little pre-
vious application in microarray data analysis. In Sec. 4,
we discuss the relation of conclusions based on these
techniques to other MAQC results.

In the MAQC project, gene expression levels were
measured from two high-quality, distinct RNA refer-
ence materials and two mixtures of these materials.
Data from four microarray platforms of the seven in the

361

MAQC project provide the basis for the demonstrations
in this paper. These platforms are'

Manufacturer Code Platform

Applied Biosystems ABI Human Genome Survey

Microarray v2.0

Illumina ILM Human-6 BeadChip 48K v1.0

Agilent AGI1 Whole Human Genome Oligo
Microarray, G4112A

GE Healthcare GEH CodeLink Human Whole

Genome, 300026

1 . . . . . .
Certain commercial equipment, instruments, or materials are iden-

tified in this paper to foster understanding. Such identification does
not imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the
purpose.
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With some extensions, our techniques could be applied
to the data from the other three microarray platforms.
Each microarray platform was deployed at three test
sites, and five replicates were assayed at each site.
Thus, for each platform, the MAQC project produced
sixty assays. The complicating feature in this otherwise
simple inter-laboratory study is the large number of
expression levels measured in each assay. This feature
leads us to the use of novel statistical methods for
investigating technical variation.

In its original form, a gene expression assay consists
of many probe responses, which are generally intensity
readings from a scanner. In the cases of the platforms
considered here, the number of probe responses is
greater than 30,000, although we only select some of
these responses for our demonstrations. Each probe is a
distinct piece of nucleic acid that is immobilized on the
microarray substrate. In the case of gene expression,
each probe interrogates an mRNA sample to determine
the relative abundance of a particular transcript among
all the transcripts that make up the sample. Hybridi-
zation is the process of applying an mRNA sample to
the probes that make up a microarray.

Sources of technical variation, the focus of this
paper, affect the probe responses. Some sources of
technical variation affect most probe responses shifting
all of them up or all of them down. The effects of such
sources can be corrected in part through what is called
normalization. Two basic choices of normalization
method are usually considered. One is assay-to-assay
equalization of the intensity distribution [1]. The other
is use of external RNA controls [2, 3]. The part of the
technical variation that is most important is the part that
normalization cannot correct.

A third normalization choice can be applied to probe
responses from the MAQC project. Each laboratory
measured four reference materials, two of which are
mixtures of the other two. Because of this mixing, the
expression levels in the materials are all related by a
parametric model: The expression levels in the mixture
materials are known proportions of the levels in the
original materials. As this paper demonstrates, this para-
metric model can be the basis for a different type of
normalization. Although this normalization is potential-
ly useful in reaching biological conclusions, our imme-
diate purpose for introducing it is testing the linearity of
the probe responses.

Another aspect of normalization is limitations on its
effectiveness. The basis of normalization, regardless of
the type, is assumption of a relation among the effects
of sources of technical variation on the intensity meas-
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urements from an array. Equalization of intensity distri-
butions depends, at a minimum, on the assumption that
the technical variation shifts all the intensities of an
assay in the same direction. Use of external controls
depends on an assumption that allows changes in the
control intensities to be extrapolated to the other inten-
sities. In this paper, we use the MAQC measurements
to show limitations on normalization due to more
complicated intensity co-variation.

This paper provides results on the technical variation
observed through measurements of different materials
made in the same laboratory and through measurements
of the same material made in three different laborato-
ries. The two sets of results are based on different sta-
tistical models, which are discussed in the next section.
The results themselves appear in Sec. 3 and are dis-
cussed in Sec. 4. Finally, details on the methods are
given in Sec. 5.

2. Statistical Models

Implementation of our normalization method, which
we call parametric normalization, requires a mathemat-
ical model that faithfully describes the relations among
assays. For a particular laboratory, consider the intensi-
ty value (probe response) for assay 7 and probe g, which
we denote by y,,, where i = 1, ..., 20. The 20 assays are
5 hybridizations of material A, 5 of material B, 5 of
material C, and 5 of material D, respectively. Para-
metric normalization as implemented here consists of a
linear transformation of all the intensities of an assay.
Thus, after normalization, the intensity for assay i and
probe g is given by

Yig Mo

b

n;

where 7,; and 7, are the normalization coefficients for
assay i. Our parametric normalization model is

o-ig elg ’

(yig =My)/M, = xAieAg + xBieBg +

(1
where for materials A, B, C and D, x,, equals 1, 0, . or
(1 =), respectively, and x; equals 0, 1, (1 — ¥.) or 7,
respectively. This equation represents intensities in
terms of mean intensities, 6,, and 6y, and noise. For
material A, the right side is 6,, + 0,.e,, and for material
B, 6, + 0,e,. The quantity e, is a random variable with
mean zero and variance one. The standard deviation
of the noise 0}, is shown as a function of assay i and
probe g. In this model, the fraction of material C that
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came from material A is 7, and the fraction of material
D that came from material B is ,. On the basis of this
equation, parametric normalization is performed by
fitting the unknown parameters 1, 1;, 0,,, and 6, to
the observed intensities y,, and then using the estimated
values of 1, and 1, for normalization. The algorithm is
given in Sec. 5.

Investigation of the limitations on normalization also
requires a mathematical model but of a different type.
Consider measurements of the same material given as
intensities on the base 2 logarithmic scale. We denote
these intensities by z,, where i =1, ..., 15 indexes the
five assays from each of three laboratories. Computa-
tion of the correlation matrix is a familiar summariza-
tion of such data. Let the covariance between assays i
and j be

1 _ —
Si =a§,(zfg —z)z, —7), 2
where z; is the mean of the log intensities over the
probes for assay i and G is the number of probes. The
familiar correlation between assays 7 and j is given by

s, / IS,-,-S_[,- .

Our approach is based on modeling the covariance
between assays i and j, which is estimated by s,;, using
a factor analysis model with two common factors. The
covariance model is

if
if

l1'21 +A‘1‘22 v,
)‘il/lj] +)'i2)“_/z

i=j
i

This covariance modeling is equivalent to modeling
the Z by means of the factor analysis model
Zi =M +)'ilﬁg +)’f2f2g +l//i1/2eig > 3)
where the f,, f,,, and e,, i=1, ..., 15 are all indepen-
dent, normal random variables with mean 0 and vari-
ance 1. In this model, the random variables f,, and f,,
represent the probe-to-probe variation in the common
factors and the parameters 4, and 1,, govern the contri-
butions of the common factors to the individual assays.
This modeling gives the (log) intensity distribution
for assay i as normal with mean p, and variance
AL+ A}, +y,. The limitation arises because equaliza-
tion of the intensity distribution has only this mean and
variance available for adjustment and not the A;, and 4,
individually.
The results in this paper are based on modeling the
technical variation in four platforms. From platform to
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platform, the technical variation as portrayed by these
two models is similar. We leave aside gene-level mod-
eling of the differences among platforms [4]. We do not
consider the question of inter-platform reproducibility,
the main subject of many studies [5, 6].

3. Results

3.1 Parametric Normalization

To assess the linearity of the probe responses after
parametric normalization, we determine how well the
mixture model fits the normalized measurements. Our
measure of lack of fit is a weighted sum of squared
deviations, which we compute for each probe. For a
particular laboratory, let the normalized intensities
for probe g be denoted by u,, i=1,..,20. From
these intensities, we estimate 6,, and 6;, denoting the
estimates by 6,, and 6. The averages of the five
normalized intensities for each material deviate from
the values computed with the mixture model in
accordance with

— _éAg

MAg

u,, —06

Bg Bg
ﬁCg - 7c9Ag - (l —7Yec )eBg
L_th - (I_YD)GAg - yDOBg

Note that these deviations reflect departure of the nor-
malized probe responses from linearity. Lack-of-fit for
each probe is indicated by the weighted sum of squares
of these deviations

WAg (L_lAg - éAg )2 + WBg (ﬁBg - éBg )2
W, (g, =70, —(1=70)0,,)
+WDg (’/Tog - (1 Vb )éAg - j/DéBg )2 5

where the weights w,,, Wy, W¢,, and wp, are inversely
proportional to G,

The amounts of RNA material mixed to form
materials C and D were in 3 to 1 and 1 to 3 ratios. Were
the fraction of mRNA in materials A and B the same,
we would have y. = 9, = 0.75. However, these fractions
are not exactly equal. Based on our analysis of the
MAQC data and a complementary analysis [7], we
have adopted .= 0.80 and 7, = 0.69 as values for our
deviations. In our analysis, we obtained estimates of
Ye and 7, from each of the four platforms we consider.
The estimates given by different platforms are in reason-
able agreement.
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One way to interpret our deviations is to compare
them with what would be expected were the mixture
model to fit perfectly [8]. We obtain a standard devia-
tion from each of the five normalized intensities for a
material and denote these by s,,, 54, S, and sp,. The
comparison involves the ratio of the sum of squared
deviations with

1 2 + 2 + 2 + 2
—| WaeSie  WaeSse + WegSce + Wog S |-

10

The scale factor 1/10 depends on specifics of the MAQC
design and the number of unknown parameters in the
mixture model. If the mixture model fits, this ratio
is F distributed, that is, distributed as the ratio
of two independent variances. The numerator and
denominator degrees of freedom are 2 and 16.

To complete this interpretation of lack-of-fit, we com-
bine the F values from all the probes into a distribution
and compare this observed distribution with the F distri-
bution for 2 and 16 degrees of freedom. We make this
comparison with a quantile-quantile plot. Each point on
this plot corresponds to a probe. The y value is the natu-
ral logarithm of the F value for this probe. Thus, a y
value corresponds to an observed quantile. The corre-
sponding x value is obtained from the ranking of this F
value among all the F values. The x value is obtained as
follows: First, find the proportion of all the F values that
are less than the particular F value. Let this proportion be
m/n, where n is the total number of probes. Second, find
the value such that the cumulative F distribution for this
value is (m + 0.5)/n. The logarithm of this value is the x
value for the probe. Thus, an x value corresponds to a
quantile hypothesized on the basis of perfect fit to the F
distribution. Quantile-quantile plots for the sites that
made use of the Applied Biosystems platform (ABI) are
shown in Fig. 1. The methods section describes selection
of probes for this figure. In addition to the points, there
is the x =y line. If there were no lack of fit, the points
would lie on this line. Apparently, there is some lack of
fit, and the unanswered questions involve the implica-
tions of this lack of fit.

The size of the gap between the points and the x =y
line depends on both the fit of the mixture model and on
the denominator of the F ratio, which is proportional to
the variance exhibited by the replicate measurements on
the same material. To judge the gap in terms of the repli-
cate variance, we can ask for the size of the factor that
the denominator of the F ratio would have to increase for
the points and the line to coincide. This factor is general-
ly small as is shown by the fact that if the denominator
were increased by a factor of 2.7, then the points would
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move downward 1 unit on the y axis. This suggests that
the lack of fit exhibited in Fig. 1 is so small in compari-
son to the noise level that diagnosis of this lack of fit
might be difficult. Moreover, note that the gap is
ambiguous as a performance measure since it increases
with lack of fit but decreases with increasing noise level.

For each of the sites in Fig. 1, the departure of the
points from the x = y line is greater at the upper end. This
shows that the upper tail of the observed distribu-
tion is heavier than it would be were the F values truly F
distributed. Generally, one might summarize the lack of
fit as being most notable in a small fraction of the probes
that have observed F values so large that they cannot be
attributed to estimation error as given by the F distribu-
tion.

Another view of the sum of squared deviations is com-
parison of its value under parametric normalization with
its value under the manufacturer’s specified normaliza-
tion. To obtain this latter value, we use the manufactur-
er’s values for u;,, but do not change the weighting in
either the estimation of 6,,, and 6,, and or in the compu-
tation of the weighted sum of squared deviations.
Because the two normalizations may differ by a scale
factor, we divide each sum of squares by the correspon-
ding value of (6,, — Ggg)z. We have compared one
scaled sum of squares with the other for each of the sites
that used the Illumina platform (ILM). We see that for
the majority of the probes considered, parametric nor-
malization gives a smaller scaled sum of squares, which
indicates that parametric normalization provides a better
fit. This, of course, is not surprising because the paramet-
ric normalization is optimized on the basis of the mixture
model whereas the manufacturer’s normalization does
not make use of such knowledge.

In characterizing the non-linearity of probe responses,
one must apply normalization but, ideally, normalization
that does not introduce non-linearity by itself. Figure 2
provides lack-of-fit quantile-quantile plots for the data
under parametric normalization and under manufactur-
er’s prescribed normalization. That the parametric nor-
malization gives F statistics closer to the x =y line shows
that parametric normalization is better for characteriza-
tion of the inherent non-linearity of the probe responses.

Linearity of the probe responses is especially impor-
tant in the determination of differential expression
between two samples. We consider the differential expres-
sion between materials A and B expressed as the base 2
logarithm of the ratio of the two responses. We compute
the differential expression as log, (6,,/6;,). Figure 3
compares differential expression determined under para-
metric normalization with differential expression deter-
mined under manufacturer’s prescribed normalization.
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Fig. 1. For ABI, quantile-quantile plots that compare the observed F statistics with the F distribution with 2 and
16 degrees of freedom. Closeness to the x = y line indicates weakness of evidence of lack of fit.
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Fig. 2. For ILM data under parametric normalization (black open circle) and under manufacturer’s prescribed
normalization (gray solid circle), superimposed quantile-quantile plots that compare the two sets of observed F
statistics with the F distribution with 2 and 16 degrees of freedom. Closeness to the x =y line indicates better
linearity for parametric normalization.

365



Volume 111, Number 5, September-October 2006
Journal of Research of the National Institute of Standards and Technology

Site 1

Site 2

Site 3

Difference Between Prescribed and Parmetric Normalization
Difference Between Prescribed and Parmetric Normalization

Difference Between Prescribed and Parmetric Normalization

5 0 5 5
Parametric Normalization

0
Parametric Normalization

5 5 0 5
Parametric Normalization

Fig. 3. For ILM data, bias in differential expression under manufacturer’s prescribed normalization when
compared to parametric normalization. The differences in differential expression values are plotted versus the

parametric normalization values.

In Fig. 3, we treat parametric normalization as the base-
line because it provides better linearity as shown in
Fig. 2. The vertical dimension shows the bias intro-
duced by the manufacturer’s prescribed normalization.
Note that the bias is toward higher differential expres-
sion for material A. This figure shows that were it
possible, there might be benefit in using parametric
normalization in the interpretation of the results from a
biological experiment.

3.2 Effectiveness of Normalization

We now switch from within-laboratory modeling of
different materials to among-laboratory modeling of
the same material. It has long been recognized that
there are potentially substantial inter-laboratory differ-
ences in outright measurement of intensities. For this
reason, one would avoid comparison of measured
intensities across laboratories if one could. However,
biological considerations in the design of a study may
require processing samples to be compared in different
laboratories or in a single laboratory with sufficient
time delay that the technical variation will have inter-
laboratory characteristics. This sub-section shows the
perils in such comparisons.
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Of course, the meaningfulness of the following char-
acterization of inter-laboratory differences depends on
data used for the characterization. We note the follow-
ing: Mixing should not be apparent as a source of inter-
laboratory variation because the materials were mixed
in one laboratory and shipped to all the other sites in the
project. Each platform manufacturer was motivated to
choose the other two sites for their platform carefully
and to harmonize protocols among the three sites.
There was a pilot study that contributed to the harmo-
nization. However, it is true that gauging how well the
protocols agreed is difficult because of the multi-
dimensional nature of microarray assays. Finally, gen-
eralization from three sites per platform is subject to
appreciable uncertainty. Thus, from the MAQC data,
one cannot say how difficult it might be to overcome
the inter-laboratory differences discussed.

As discussed in the methods section, we select, for
the Agilent platform (AG1), the 3000 probes for each
material that have the highest intensity overall.
Applying factor analysis to the set of material A inten-
sities transformed to the log base 2 scale, we obtain
Table 1. The symbols heading the columns in Table 1
are those found in Eq. (3). The column labeled Center
gives the mean of the 3000 log intensities for each
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Table 1. For AGI results on material A, estimated parameters of the factor analysis model given in Eq. 3. For each
assay, the parameters give the distribution of the log (base 2) intensities.

Site 1 Center Specific Factor Common Factor Common Factor
u, 2 An Ay
Site 1 9.82 0.26 0.66 0.72
Site 1 9.94 0.25 0.75 0.64
Site 1 9.83 0.25 0.71 0.68
Site 1 9.98 0.23 0.74 0.65
Site 1 9.78 0.25 0.73 0.65
Site 2 10.77 0.07 0.81 0.59
Site 2 10.42 0.07 0.82 0.57
Site 2 10.40 0.09 0.83 0.55
Site 2 10.42 0.16 0.82 0.56
Site 2 10.32 0.09 0.85 0.52
Site 3 10.58 0.10 0.56 0.82
Site 3 10.60 0.11 0.56 0.83
Site 3 10.30 0.04 0.56 0.83
Site 3 10.50 0.08 0.55 0.83
Site 3 10.26 0.07 0.58 0.81

assay. Inclusion of this parameter in the model provides
an elementary form of assay-to-assay normalization. The
column labeled Specific Factor gives an estimate of the
standard deviation of the noise that is independent from
probe to probe. This column also shows some difference
among laboratories.

The columns labeled Common Factor complete the
model of the distribution of the log intensities that
our analysis provides. The intensities are centered at U,
and have spread given by the standard deviation

JAL+A% 4y, . Between assays i and j, the log intensi-

ties have correlation given by

J@:

The amount of correlation depends on the similarity of
parameters A, and A,, which model how the common
sources affect each assay.

The relation between the components of the two com-
mon factors A, and 4, is shown in Fig. 4 for all four
materials. Normalization is generally based on differ-
ences among distributions of the intensities of the assays.
In terms of our model, this distribution depends on the
distance of the points in this figure from the origin. Thus,
normalization can be used to adjust the intensities for
each assay so that the distance of each assay from the ori-
gin is the same. However, Fig. 4 shows that such adjust-
ment cannot eliminate the differences among assays. The
oblique axes shown in each panel generally differentiate
the part of the assay-to-assay differences that can and

Aok, +Anh,
+l?2 'H//i )(li'l +2‘i‘2 +w.f)
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cannot be reduced by normalization. Apparently, there is
a source of technical variation that must be dealt with not
by normalization, but by other means. Such a source
might be variation in some experimental circumstance,
perhaps temperature or washing technique, that interacts
with the strength of the hybridization bond.

In addition to showing the effects of sources of varia-
tion, Fig. 4 also shows clustering of the assays by labo-
ratory, which portrays the magnitude of the among-labo-
ratory variation compared to the within-laboratory varia-
tion. Comparisons like this are central to metrology. In
the case of univariate measurements, the comparison is
between the within-laboratory variance and the among-
laboratory variance and is called gauge R&R (repeatabil
ity and reproducibility) [9]. In the case of high dimen-
sional measurements such as gene expression assays
with thousands of probes, it is common to apply some
form of dimension reduction such as principal compo-
nents analysis (PCA) followed by display of the
measurements in the reduced coordinates [10, 11].
Irizarry et al. [12] discuss inter-laboratory variation in
gene expression measurements.

Instead of PCA plots, we obtain a perspective on the
measurements that places more emphasis on the among-
laboratory variation. Our approach is linear discriminant
analysis. Like PCA, we find two linear combinations of
the measurements from each assay. In the case of dis-
criminant analysis, these combinations are called dis-
criminant coordinates. The difference is that we find lin-
ear combinations that maximize the separation of the
laboratories with respect to the within-laboratory varia-
tion. To do this, we must adopt penalized discriminant
analysis [13, 14].
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Fig. 4. For AG1, plots of common factors showing assay differences with assay sites labeled. Shown are the relations of the differences to the
origin. Distribution-based normalization might bring all the assays to the same distance from the origin, but it cannot bring the assays together in

the other dimension.

Based on the log, intensities for material A from the
GE Healthcare platform (GEH), we derive discriminant
coordinates with which we plot the 15 material-A assays.
These points along with points for material B are shown
in Fig. 5. We see that the groups of material-A points for
each laboratory are separated. This is not surprising since
we derived the discriminant coordinates from the mate-
rial A measurements.

What is more interesting about Fig. 5 is the clustering
of the material-B points. The discriminant coordinates
for material A also separate the material B assays by lab-
oratory. Apparently, the measurements from each array
have inherent in them a signature associated with the
processing laboratory. Such a signature originates
from one or more sources of technical variation. This
signature is strong enough that it stands out despite
the difference between materials A and B. Were we to
add materials C and D to Fig. 5 in the same way
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as material B, we would obtain the same clustering for
these materials. Reversing the roles of materials A and B,
that is, deriving the discriminant coordinates from the
material B measurements instead, gives a result similar
to Fig. 5.

Portraying among-laboratory differences in terms of
discriminant analysis is particularly relevant to develop-
ment of biomarkers on the basis of microarray measure-
ments. Biomarkers can be developed from microarray
measurements of samples from both cases and controls.
Consider the possibility that the cases have been meas-
ured in a different laboratory than the controls, perhaps
for logistical reasons. What Fig. 5 shows is that among-
laboratory differences could easily be mistaken for case-
control differences. Moreover, this suggests that within-
laboratory differences involving a considerable time
period might also be mistaken for case-control
differences.
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Fig. 5. For GEH, assays labeled by material and site plotted with material A discriminate coordinates.
Coordinates give the maximum inter-laboratory separation for results on material A. Plot shows that material B

results have laboratory signatures like those of material A.

4. Discussion

As aresource for investigation of technical variation,
the laboratories involved in the MAQC project have
provided measurements with state-of-the-art replica-
tion. Such measurements are of particular interest
because the variation observed represents a technolog-
ical challenge, not a circumstance that can be easily
changed by closer attention to the requirements of the
measurement protocol.

An overview of the MAQC project is provided in
Ref. 15. This reference provides a more complete
description of the MAQC data including parts of data
set not considered in this paper. This reference also
contains figures that depict the MAQC data. The title of
this reference is problematical in that it implies that
reproducibility is a qualitative property that a measure-
ment system does or does not have. In metrological
studies, reproducibility is a quantitative property that
describes closeness of the agreement between the
results of measurements on the same material. In the
case of univariate measurements, reproducibility is
usually described by a standard deviation. It is not clear
what quantitative summary of the technical variation in
microarray assays is sufficiently inclusive of all aspects
of this technical variation. As demonstrated herein,
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statistical modeling can portray some aspects of repro-
ducibility for gene expression assays.

On the basis of statistical modeling, this paper char-
acterizes the technical variation in four ways generally
corresponding to the figures. First is the linearity of
probe responses, which we characterize by comparison
with appearances that can be expected from noise
alone. Second is the amount of reduction of technical
variation by off-the-shelf normalization, which we
characterize by comparison with parametric normaliza-
tion. Third is a fundamental limitation of normaliza-
tion, which we characterize in terms of sources of vari-
ation not subject to the usual normalization assump-
tions. Fourth is a difference between laboratories,
which we characterize by choosing a certain perspec-
tive on this difference and comparing it with the differ-
ence between materials A and B. Note that the figures
except for Figs. 2 and 3 are each based on a different
platform. Each characterization could be applied to
each platform giving a total of twenty figures, which
we do not display because each characterization gives
similar results for each platform.

The predominant features of these characterizations
and the statistical models that they reflect can be
expected to hold true in future applications of the plat-
forms to biological studies. Prediction of properties of
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the technical variation that one should expect in future
studies is the purpose of inter-laboratory studies such as
the MAQC project. This standard should be applied to
the depiction of the MAQC data in Ref. 15.

Common in the application of microarrays is screen-
ing for a few differentially expressed genes. This para-
digm influences the way people analyze measurements
when trying to understand technical variation. In partic-
ular, many of the graphical methods familiar in microar-
ray analyses are centered on quantities with familiar
meanings in the context of individual genes and have
probe-to-probe independence as the foundation for their
interpretation. In contrast, this paper focuses on assay-to-
assay associations that involve many probes. Such asso-
ciations generally point to a few sources of technical
variation and, in addition, form the basis for normaliza-
tion. The characteristics of technical variation we have
identified are important in common applications of
microarray technology, but the connection requires some
thought. Moreover, this thought is different from the
quality-control thinking that serves so well for univariate
measurements. Univariate quality control has only limit-
ed application to a measurement method that gives
perhaps 50,000 responses at a time.

Many scientists require a transparent link between the
original data and analysis results before they are willing
to trust a characterization. Since providing this link with
a single figure does not seem possible, we have per-
formed further analyses to verify our characterizations.
Regarding Fig. 1, for example, the observation that
points for site 2 lie below the x =y line seems to indicate
violation of some assumption about the data besides
model lack of fit. We have identified violation of the
normality assumption as a possible cause. Regarding
Fig. 4, we chose to do factor analysis with two common
factors. Inclusion of a third common factor adds detail to
the results. More broadly, we note that two different
models of microarray intensity form the basis of this
paper and that this raises the question of which model is
more faithful to the physical processes underlying
microarray measurements. Although better models give
better results, models do not have to be exact to give use-
ful results. Because we do not use the two models in the
same context, they can each be useful without their being
in agreement.

The analyses in this paper indicate that technical vari-
ation in microarray assays might sometimes be reduced
through better approaches to normalization, but that
reduction of the technical variation itself through
improved measurement protocols and through more con-
sistent adherence to these protocols might finally be
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needed. Moreover, the analyses provided should be con-
sidered in developing experimental designs for micro-
array studies and QC metrics for monitoring study
progress. In particular, our analyses show technical vari-
ation problems in comparing expression levels across
sites and therefore potentially also over long time periods.

5. Methods

The original measurements, the responses of the
probes before normalization, are the starting point for
our approach. This is necessary because our approach
involves insight into technical variation gained through
study of normalization. We apply a novel normalization
method, parametric normalization, as a way of observing
non-linearity in the responses of the probes. In portray-
ing the limitations on normalization, we compare
among-laboratory variability with within-laboratory
variability. This is a comparison we cannot make with
measurements subjected to a type of normalization that
reduces within-laboratory variation without similar
reduction in the among-laboratory variation.

5.1 Probe Selection

We selected probes for each of our four analyses fol-
lowing a similar process for each platform. We began
with the 12091 probes in the commonly mapped set
chosen by the MAQC organizers for inter-platform com-
parison. For AG1 and GEH, we eliminated probes from
this set based on the qualitative calls or on duplication of
an identifier in the original data. For AGI, inclusion is
based on the value “0” for control type, feature non-
uniformity, and saturation. For GEH, inclusion is based
on “L” or “G” as the qualitative call. Moreover, we
eliminated any probe that does not meet the inclusion
criterion for all sixty assays performed with the platform.
We entirely eliminated probes with duplicate identi-
fiers. Thus, we begin our selection with 12091, 12091,
11705, and 9378 probes for ABI, ILM, AG1, and GEH,
respectively.

For each platform and each material, we next selected
the 3000 probes with highest expression level. Consider
material A. First, we transformed the intensities to the
base 2 logarithmic scale. This required addition of a
starter of 100 for AG1 and a starter of 0.3 for GEH. Next,
we centered the logarithmic intensities for each assay at
their mean. We then computed the mean over the 15
assays for material A and on the basis of this mean select-
ed the 3000 largest intensities. This gives a set of probes
we call the A set. Similarly, we obtained the B set, the C
set and the D set.
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Our lack-of-fit analysis and normalization comparison
are based on combining the A set and the B set with an
exclusive OR. In other words, the probes in these analy-
ses are either in the A set but not the B set or in the B set
but not in the A set. The number of probes is 1982 for
ABI and 1984 for ILM. We applied factor analysis to
single materials: the probes in set A, set B, set C and set
D for materials A, B, C and D, respectively. We applied
discriminant analysis to the material A responses from
the probes in set A. We then calculated discriminant co-
ordinates for the material B responses from the probes
in set A.

5.2 Parametric Normalization

Our algorithm for parametric normalization is a com-
bination of iterative reweighted least squares [16] and
crisscross regression [17, 18]. The weighting is based on
the suggestion of Rocke and Durbin [19].

For regression under the model discussed in Sec. 2,
the weights are inversely proportional to the variance
O'ng. Following Rocke and Durbin [19], this variance is
proportional to the sum of the expression level squared
(x40, + x5,05,)° and a constant. We followed the
approach of Rocke and Durbin [19] in finding the size of
the constant relative to the size of the squared expression
level.

To obtain an initial estimate of the weights, we esti-
mate the expression levels from the un-normalized inten-
sities y,, using un-weighted least squares. Then, using
these weights, we re-estimate the expression levels.

The main iteration in our algorithm follows: First, we
use the current estimate of the expression levels to esti-
mate the normalization coefficients 1, and 1,. These
estimates are obtained by fitting the model

nOi + n i(xAiéAg + xBi éBg)

to the un-normalized intensities with weighted least
squares based in the current expression levels. Second,
we re-normalize the intensities

A

y[g - T’ 0i
n;
and use these to re-estimate the expression levels. This
estimation is based on weights computed from the

previous expression levels. We then begin the next
iteration by re-estimating the normalization.

5.3 Factor Analysis

Separately for each material, we apply factor analy-
sis to original AG1 intensities transformed to the log
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(base 2) scale. For the 3000 probes with highest expres-
sion levels that are given by sets A, B, C, and D, respec-
tively, it is not necessary to add a starter to make the
responses all positive. Our factor analysis computations
are based on the usual maximum likelihood algorithm
[20].

5.4 Discriminant Analysis

We apply discriminant analysis to original GEH inten-
sities transformed to the log (base 2) scale with a starter
of 0.3 added. We select the set A probes for both materi-
als A and B. Because the starter is necessary for only one
intensity value, we could as easily use another approach,
but this would not lead to any noticeable change in
Fig. 5. The classical approach to discriminant analysis
does not apply in our situation because there are many
more probes than replicate assays. For this reason, our
derivation is based on penalized discriminant analysis
[13], which entails adoption of a penalty function. As
inputs to their algorithm, we take the centered log base 2
intensities. This centering is an elementary form of nor-
malization. Our choice of penalty function is the identi-
ty matrix multiplied by 1000. Hastie and Tibshirani [14]
provide a needed part of the algorithm.
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